Rapid Refresh Review – Hourly Updated Models

NCEP Production Suite Review - 2011

NOAA/ESRL/GSD/AMB

Stan Benjamin Steve Weygandt

Ming Hu / Tanya Smirnova
Curtis Alexander / John M. Brown
David Dowell / Joe Olson
Bill Moninger / Haidao Lin
Georg Grell / David Dowell
Patrick Hofmann / Eric James
Tracy Smith / Susan Sahm

NCEP -

Geoff Manikin, Geoff DiMego, Dennis Keyser, Julia Zhu, Xiaoxue Wang, EMC and NCO

Major topics:

- Rapid Refresh
 - NCEP implementation planned 24 Jan 11
 - significant improvement over RUC
 - major improvements in testing at ESRL for Rapid Refresh 2 (satellite, cloud, soil assimilation, WRFv3.3.1+)
- 3km HRRR @ESRL
 - April 2011 parent assimilation switched to ESRL Rapid Refresh from ESRL-RUC
 - 2012 improved surface/soil/cloud assimilation in ESRL-Rapid Refresh, upper boundary, revised radar assim

Hourly Updated NOAA NWP Models

Rapid Refresh (RR) replaces RUC at NCEP WRF, GSI with RUC features

RUC Becomes Rapid Refresh

RUC

- Non-WRF RUC model
- RUC 3DVAR analysis
- 24/Day = hourly update
- Forecasts to 18 hours
- 13 km horizontal

Rapid Refresh

- WRF-based ARW
- GSI analysis
- Expanded 13 km Domain
 - > ~2.8 times bigger
 - Includes Alaska
- Experimental 3 km HRRR runs ONLY at ESRL currently

Outline

- ■Model description for Rapid Refresh
- □ Data assimilation description for RR (RAP)
- □Output from RAP (grids, Unipost mods, RTMA, BUFR)
- Partial cycling for Rapid Refresh, SST, land-surface grids
- Verification statistics for RAP vs. RUC

WRF model enhancements for Rapid Refresh

- WRF ARW v3.2.1+ for initial RR
 - WRF v3.3 issued too late in April 2011 NCEP code freeze
- Benefited from ongoing community improvements to WRF
- GSD improvements
 - Digital filter initialization (DFI allows quiet 1h forecasts)
 - DFI-radar
 - Grell 3-d cumulus
 - RUC LSM (now with snow LSM cycling on sea ice)
- Use of rotated lat-lon grid GSD was first to use ARW with RLL

NOAA Hourly Models

Model	Domain	Grid Points	Projection	Grid Spacing	Vertical Levels	Vertical Coordinate	Height of Lowest Level	Pressure Top
RUC	CONUS	451 x 337	Lambert conformal	13 km	50	Sigma/ Isentropic	5 m	40-85 hPa (500K)
RAP	North America	758 x 567	Rotated lat/lon	13 km	50	Sigma	8 m	10 hPa

Model	Run at:	Time-Step	Forecast Length	Initialized	Boundary Conditions	Run Time
RUC	NCEP oper	18 s	18 hrs	Hourly (cycled)	NAM	~25 min
RAP	GSD, EMC	60 s	18 hrs	Hourly (cycled)	GFS	~25 min

Model physics comparison

model	Shortwave Radiation	Cloud physics (# hydrometeor types)	Cumulus parm	Boundary layer (PBL)	Shallow cumulus	Land- surface model
GFS	RRTM	Zhao-Carr (1)	Simplified Arakawa- Schubert	MRF – Troen- Mahrt	Jongil Han	Noah
NAM	Goddard	Ferrier (1)	Betts- Miller- Janjic	Mellor- Yamada- Janjic	BMJ	Noah
RUC	Dudhia	Thompson - 2004 - 1- moment rain (4)	Grell- Devenyi	Burk- Thompson	none	RUC (2003)
Rapid Refres h	Goddard	Thompson - 2010 – 2- moment rain (5)	Grell-3D	Mellor- Yamada- Janjic	Grell	RUC – from WRFv3.3

Rapid Refresh GSI-based Hourly

Assimilation Cycle

Cycle hydrometeor, soil temp/moisture/snow

<u>H</u>	0	u	r	y	0	<u>bs</u>
				_		

Data Type	~Number/hr
Rawinsonde (12h)	120
NOAA profilers	21
VAD winds	~125
PBL – profiler/RASS	~25
Aircraft (V,temp)	2K-15K(avg 7K)
WVSS (RH)	0-800(avg 520)
Surface/METAR	~2500
Buoy/ship	200-400
GOES cloud winds	4000-8000
GOES cloud-top pres	10 km res
GPS precip water	~260
Mesonet (temp, dpt)	~8000 (RRv2)
Mesonet (wind)	~4000 (RRv2)
METAR-cloud-vis-wx	~2000
AMSU-A/B/HIRS/etc. I	radiances
GOES radiances -	in testing – RRv2
Radar reflectivity	1km
Lightning (proxy refl)	(RRv2)
Radar radial wind -	<i>in testing</i> - RRv2
Nacelle/tower/sodar	(future)

Diabatic Digital Filter Initialization

Reduce noise in RUC and Rapid Refresh

Radar reflectivity assimilation

Digital Filter-based reflectivity assimilation initializes ongoing precipitation regions

+ RUC/RAP Convection suppression

Rapid Refresh (GSI + ARW) reflectivity assimilation example

Outline

- Model description for Rapid Refresh
- □Data assimilation description for RR (RAP)
- □Output from RAP (grids, Unipost mods, RTMA, BUFR)
- Partial cycling for Rapid Refresh, SST, land-surface grids
- Verification statistics for RAP vs. RUC

Rapid Refresh NCEP planned grid distribution

RAP grid distribution from NCEP will include:

- 130 (13 km CONUS): pgrb, bgrb
- 252 (20 km CONUS): pgrb, bgrb
- 236 (40 km CONUS): pgrb
- 242 (11 km Alaska): one file with all needed parameters
- 221 (32 km nearly full domain): one file with all needed parameters

(NOTE: Full NAM grid is also on 221 grid)

• 200 (12km Puerto Rico) - single output file

Additional grid not to be distributed initially due to bandwidth limitation

83 (13km full Rapid Refresh domain on rotated lat/lon grid)

Unipost options added for Rapid Refresh application

- Ceiling -includes NCAR code for effect of falling snow
- Visibility -includes RH component and updated coefficients from NCAR
 - Now used by Binbin Zhou for SREF
- MAPS SLP reduction more coherent SLP pattern over elevated terrain, matches RUC output SLP
- Precip-type based on explicit qi/qc/qr/qs/qg
- Heights for ARW input
- Switch to virtual temp for CAPE/CIN, others
- All commits into NCEP Unipost repository

Other post-processing, NARRE-TL

- BUFR soundings
- Downscaling for RTMA background
 - RAP replacing RUC
- GEMPAK grids
 - for SPC, AWC, HPC
- Hourly updated regional ensemble with RAP and NAM time-lagged ensemble members
 - Formerly known as VSREF (very short range)
 - Official name NARRE-TL N. American Rapid
 Refresh Ensemble Time-lagged

Member Weighting = 1 - forecast age (hr)/30:

1 for current fcst and 0 for 30hr-old fcst

(NAM always older than RR → gives more weight to RR members)

RR's first 6 hr forecasts are used up for time-lag

Example for 06Z cycle's NARRE-TL:

Outline

- Model description for Rapid Refresh
- □Data assimilation description for RR (RAP)
- □Output from RAP (grids, Unipost mods, RTMA, BUFR)
- □Partial cycling for Rapid Refresh, SST now using RTG_SST_HR-12km
- Verification statistics for RAP vs. RUC

Rapid Refresh Partial Cycling

RR Hourly cycling throughout the day

- Hourly cycling of land surface model fields
- 6 hour spin-up cycle for hydrometeors, surface fields

Hurricane Irene

Obs 15z Sat 27 Aug 2011

- RAP partial cycling with GFS inserted 2x/day very helpful for tropical cyclones in RAP, which then spins down TCs to 13km horizontal resolution.
- RAP will be much better background for RTMA for TCs

Outline

- Model description for Rapid Refresh
- □Data assimilation description for RR (RA)
- □Output from RAP (grids, Unipost mods, RTMA, BUFR)
- □Partial cycling for Rapid Refresh, SST now using RTG_SST_HR-12km
- □Case studies and verification statistics for RAP vs. RUC

mid-Atlantic post-frontal rain band

- evening 16 Nov 2011
- RAP handled vort max much better, so it had stronger forcing than the RUC in the mid-Atlantic and showed better potential for a rain band behind the sfc cold front

How a sequence of hourly RAP runs can help piece together a forecast issue:

Height 12-hr Bias 1 March 2011 to 19 July 2011 Height 12-hr RMS 1 March 2011 to 19 July 2011 RUC; MEAN = 1.08459E+01RUC; MEAN = 1.80545E+01RAP; MEAN = 2.38996E+00RAP; MEAN = 1.38667E+01100 100 12h fcst 150 150 **RUC** 200 200 250 250 RR 300 300 **Height -bias** 400 400 1 Mar – 19 Jul 11 Height - rms 500 500 1 Mar - 19 Jul 11 700 700 850 850 1000 1000 3 12 15 18 21 24 27 12 36 15 18 21 27 30 33 24 ZERO rgn:RUC, height bias 12h fcst 2011-10-24 thru 2011-11-19 ZERO rgn:RUC, height rms 12h fcst 2011-10-24 thru 2011-11-19 isoRR1h-isoBak13 rgn:RUC, height bias 12h fcst 2011-10-24 thru 2011-11 isoRR1h-isoBak13 rgn:RUC, height rms 12h fcst 2011-10-24 thru 2011-11 isoRR1h rgn:RUC, height bias 12h fcst 2011-10-24 thru 2011-11-19 isoRR1h rgn:RUC, height rms 12h fcst 2011-10-24 thru 2011-11-19 isoBak13 rgn:RUC, height bias 12h fcst 2011-10-24 thru 2011-11-19 isoBak13 rgn:RUC, height rms 12h fcst 2011-10-24 thru 2011-11-19 pressure (hPa, matched) 800 600 400 200 matched) 400 200 **Height -bias** 24Oct-20Nov (hPa, Height - rms 600 **RAP** pressure 24Oct-20Nov11 **RAP RUC** 1000

10

0

20

m

30

-8.0

0.0

m

-4.0

4.0

8.0

12.0

Later in 2012, Rapid Refresh 2, changes already running in ESRL RR/HRRR

Rapid Refresh prim (——) vs. dev (———) RR-dev has PBL-based pseudo-observations

Residual mixed layer better depicted in RR-dev (w/ PBL pseudo-obs)

RR sounding

Observed 00z 7 July 2011 Albany, NY sounding

Also in ESRL RR/HRRR - Soil moisture/temperature adjustment

Rapid Refresh prim (——) vs. dev (——)
24 Sept-15 Nov difference - RR-dev has soil
adjustment starting 24 Sept

Soil adjustment q' soil

- applied if
- T'(k=1) and q'(k=1) are of opposite sign
- Daytime
- No clouds
- Proportional to q'(k=1)
 Assumption Bowen ratio error from soil moisture error
- Applied at top 2 levels in RUC LSM
- Used in RUC since 2005

Coming this winter to ESRL RR/HRRR - surface ob wind correction

Historical database for each surface station, ob-fcst difference for 9 different wind direction bins – 24h RR cycle test

RAP upgrades for RAP2 proposed for late 2012 (already successfully tested in RAP @ ESRL)

- Moisture PBL-based pseudo-observations
- Soil adjustment from near-sfc temp/moisture analysis increment
- (Last 2 important for convective environment, both in RUC but not yet in NCEP RAP)
- MODIS land use, Assimilation of radial wind, lightning, mesonet data

Starting now in testing in ESRL RAP

- WRFv3.3.1, improved vertical advection, upper boundary condition
- GOES radiances

Hourly Updated NOAA NWP Models

Rapid Refresh (RR) replaces RUC at NCEP - WRF, GSI with RUCbased enhancements

RR and HRRR Model Descriptions

Model	Grid Spacing	Vertical Levels	Vertical Coordinate	Lowest Model Level	Boundary Conditions	Initialized
RR	13 km	50	Sigma	~8 m AGL	GFS	Hourly (cycled)
HRRR	3 km	50	Sigma	~8 m AGL	RR	Hourly (no-cycle)

Model	Version	Assimilation	Radar DFI	Radiation	Microphysics	Cum Param	PBL	LSM
RR	WRF- ARW v3.2+	GSI-3DVAR	Yes	RRTM/ Goddard	Thompson	G3 + Shallow	MYJ	RUC
HRRR	WRF- ARW v3.2+	None: RR I.C.	No	RRTM/ Goddard	Thompson	None	MYJ	RUC

April 14, 2011: HRRR parent assimilation / model system switched from RUC to rapid Refresh

Spring 2011 Hourly HRRR Initialization from RR

RR radar assimilation and HRRR

- Radar-DFI is cycled on13-km RR (parent) grid
- No cycling or radar DA on 3-km HRRR (child) grid
- → Storms must "spin-up" within each HRRR run

How effective is cycled "radar-DFI" procedure applied on mesoscale grid?

- -- for mesoscale "parent" grid?
- -- for storm-scale "child" grid?

Reflectivity is assimilated, but used to modify velocity field

"parent" — — — vs. "child" —— Reflectivity Verification

25 dBZ 13-km Eastern US

Matched Comparison 12,13,14,19 Aug. 2011 All init times

→3-km fcsts
improve upon
parent 13-km
forecasts
→ radar assim
adds skill at both
13-km and 3-km

+1h fcsts

Valid: 01z 12 Aug 2011

+2h fcsts

Valid: 02z 12 Aug 2011

+3h fcsts

Valid: 03z 12 Aug 2011

Radar observations

8 hour HRRR model forecast

20 UTC April 16, 2011

Radar observations

9 hour HRRR model forecast reflectivity

22 UTC April 27, 2011

Radar observations

22 UTC April 27, 2011 9 hour HRRR model forecast updraft helicity

Time-lagged ensemble

Example: 15z + 2, 4, 6 hour HCPF

11z 12z 13z 14z 15z 16z 17z 18z 19z 20z 21z 22z 23z

HRRR Time-lagged

Severe Weather Application

Tornado Outbreak KS/OK 10 May 2010

Updraft helicity from four HRRR runs 13-16

co ded by rich 14z HRRR
15z HRRR
16z HRRR

Tornado Reports

HRRR Severe Weather

Tornado Outbreak KS/OK 10 May 2010

Updraft helicity probability
Four consecutive HRRR runs (13-16 UTC)

Time-bracket of 2-hrs 45 km search radius

HRRR and HCPF

Overlaying deterministic and probabilistic guidance

HRRR and HCPF

Overlaying deterministic and probabilistic guidance

15-min output frequency (grib files) available for selected fields

Comparison of HRRR forecast reflectivity (with 15-min output frequency) and observed reflectivity for hurricane Irene

Additional HRRR points

- HRRR useful for much more than convection
 - Surface wind forecasts, especially in the west
 - Terrain related features
 - → Ceiling and visibility forecasts
 - → County-scale details for many systems
- HRRR skill very dependant on Rapid Refresh
 - → RR hourly assimilation of conventional obs key
 - → RR radar-DFI is HRRR storm DA mechanism
 - → RR Model biases greatly affect HRRR forecasts
 - → RR improvements in these areas help HRRR
- HRRR development work areas
 - → RR model (WRF-ARW) and data assimilation (GSI)
 - → HRRR model and assimilation
 - → HRRR output post-processing (special fields NSSL, TL-ensemble probabilities, hourly soundings)

Ongoing / Future HRRR (and RR) work

- HRRR model changes
 - →Update to WRF v3.3.1
 - → Switch to 5th order vertical advection
 - → Switch to W-Raleigh damping for upper levels
- Radial velocity assimilation
 - → Slight degradation in last 13-km test, expect for RR2
 - >Experiments with 3-km radial velocity assimilation
- 3-km cloud analysis
 - → Test GSI cloud analysis at 3-km with eventual 3-km cycling of cloud / hydrometeor and LSM fields
- Regional EnKF / hybrid work with OU/CAPS
 - → Excellent progress for coarse resolution (40-km) system
- Storm-scale EnKF / hybrid assimilation
 - → Collaboration with NSSL Warn On Forecast Project

HRRR Hourly Reliability (≥ 12 hr forecast) More Than Three Consecutive Missed/Incomplete Runs

— 3 month running average

HRRR computer reliability from NOAA

- Current 1 computer running HRRR
 - NOAA/ESRL Boulder (jet)
 - Current reliability: 97% for last 12h months (allowing up to 3h gaps)
- 2012-14 2 computers running HRRR interim solution
 - Boulder computer 1 (jet)
 - Fairmont, WV computer 2 (zeus) suggest NCO operations for HRRR on zeus
 - Reliability goal 99%
 - In discussion: Fill in missing HRRR products with hourly 13km Rapid Refresh and 6-hourly 4km NAM-nest
 - lower quality: can't have storm-resolving resolution and hourly updating with radar assimilation outside of the HRRR
- 2015 NCEP running HRRR
 - NOAA/NCEP computing budget will allow no increase before 2015
 - Cost of HRRR 15-22% (!) of current NCEP computing for all operational models (GFS, NAM, RUC, ensembles)
 - Computing acquisition for NOAA Research (e.g., HRRR processors funded by FAA and NOAA) has been very efficient
- Conclusion: Interim HRRR computing for 2012-14

Future plans for advanced hourly NWP/DA

- Jan 2012 Rapid Refresh operational at NCEP
- Late 2012-early2013 RapidRefresh2 -
 - cloud/surface/soil assimilation, GOES, sodar/tower/nacelle, updated GSI
 - model MODIS, cloud/PBL/numerical improvements, updated WRF
- 2013 application of hybrid/EnKF assimilation to RR in real-time testing
- 2012-14 HRRR @ESRL improves, add Fairmont HRRR to reach 99%
- 2015 High-Resolution Rapid Refresh operational at NCEP for CONUS

N. American Rapid Refresh Ensemble

- NEMS-based NMM, ARW cores
- Hourly updating with GSI-hybrid EnKF
- Initially 6 members, 3 each core, physics diversity (RR, NAM, NCAR suites)
- Forecasts to 24-h
- NMM to 84-h 4x per day

- 2015 Ensemble Rapid Refresh –
 NARRE w/ hybrid assim
- 2016 Add operational Alaska HRRR
- 2017 CONUS Ensemble HRRR HRRRE

Other improvements in init testing

- Add inline chem, chem DA
- 15-min radar assimilation
- Storm-scale radar assimilation